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Abstract

A set of non-linear continuum field equations are presented which describe the
macroscopic dynamics of neural activity in cortex. Numerical solutions of the cou-
pled non-linear system of partial differential equations show properties analogous
to cortical evoked potentials, oscillations at the frequency of the mammalian alpha
rhythm and non-stationary epileptic spikes.
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1 Introduction

Spatially continuous descriptions of the activity of cortical tissue are comple-
mentary to the more traditional and familiar neural network models which
emphasise the discrete distribution of neurons in cortex. Such continuum de-
scriptions can be motivated both physiologically and anatomically [2]. Further
these descriptions allow mathematically tractable and computationally inex-
pensive solution of large scale models of neural tissue and are especially useful
in the modeling, description and putative explanation of macroscopic electro-
cortical activity (e.g electro-encephalogram and evoked potentials). Indeed
under certain restrictions and approximations pseudo-analytical solutions can
be obtained [4]. Theories resulting from assuming spatial continuity are of-
ten referred to as cortical mean field theories in that populations of neurons
generate a field of neural activity which can be approximated to first ap-
proximation by the mean activities of densely interconnected local neuronal
aggregates. Such local neuronal aggregates, for the purposes of illustration,
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may be thought of as corresponding to some putatively identified elementary
structural or functional columniation of cortex.

Cortical field theories have been developed as coupled sets of integro-differential
equations [8,5], coupled sets of non-linear ordinary differential equations [2,9],
and more recently as coupled sets of non-linear partial differential equations
[3,7]. However all have been of limited utility because of the absence of a
clear relationship between variables and parameters of the theory and what
is experimentally measurable. Presented here are are a set of equations that
by the inclusion of anatomically derived neuronal connectivities, ionic reversal
potentials and fast excitatory and inhibitory channel kinetics ameliorate many
of these problems.

2 Theory

In order to avoid details of cellular and cortical geometry the state variable
to be modeled is the mean soma membrane potential, hj (j = e, i), which for
excitatory neurons is considered to be linearly related to the associated local
field potential and hence the electro-encephalogram [2,5], and hence will be
continuous in space. Each neuron is considered as a single RC compartment
into which all efferent synaptic activity terminates. Further it is assumed that:

• the model neural tissue consists of two functionally distinct, homoge-
neous, excitatory and inhibitory neuronal sub-populations.

• there are two, isotropic and homogeneous, scales of neuronal interaction
- cortico-cortical (long-range) and intra-cortical (short-range).

• cortico-cortical fibers are exclusively excitatory and synapse on both ex-
citatory and inhibitory cell populations.

• cortico-cortical fiber density falls off exponentially with distinct charac-
teristic scales for excitatory-excitatory and excitatory-inhibitory interac-
tions.

• intra-cortical axonal conduction delays are negligible.
• relative refractory periods are ignored to first approximation.
• synaptic and conduction delay distributions are assumed sharply peaked

about central values.
• the effect of pre-synaptic activity on the post-synaptic cells membrane

potential is described in terms of a source term driving a second order
system with two real and equal eigenvalues with the time scales of such ef-
fects corresponding approximately to “fast” excitatory (AMPA/kainate)
and “fast” inhibitory (GABAA) neurotransmitter kinetics.

• the output of each functionally distinct neural mass is defined in terms of
its average instantaneous action potential firing rate, Sj (j = e, i), which
is a sigmoidal function of the mean soma membrane potential, hj.
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Based on the above assumptions a pair of coupled integro-differential equa-
tions can be derived [4], which contain kernels of convolutions corresponding
to transmitter kinetics and cortical connectivity. By taking the Fourier Trans-
form of these kernels of (Greens functions) integer derivative terms in space
and time can be identified thus allowing the integro-differential equations to
be rewritten as a coupled set of non-linear partial differential equations. Based
on this result and under the restriction that Sj and hj do not vary significantly
over the characteristic scales of intra-cortical connectivity (spatial coarse grain-

ing), it can be shown that the following are valid one dimensional mean field

dynamical equations

τ
∂h(x, t+ ξ)

∂t
= hr − h(x, t + ξ) + Ψe(h)Ie(x, t) + Ψi(h)Ii(x, t) (1)

(

∂
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)

2

Ie(x, t) = Γeγee{N
β
e Se(he) + φ(x, t) + pe(x, t)} (2)

(

∂

∂t
+ γi

)

2

Ii(x, t) = Γiγie{N
β
i Si(hi) + pi(x, t)} (3)

(

I
∂

∂t
+ vΛ

)

2

φ(x, t)− v2
∂2φ(x, t)

∂x2
= vΛNα

(

vΛ + I
∂

∂t

)

Se(he) (4)

where h = (he, hi)
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(Nβ
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β
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i = (Nβ

ie, N
β
ii)

T ,Nα = (Nα
ee, N
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ei)

T , φ = (φe, φi)
T , Λ = diag(Λee,Λei),

τ = diag(τe, τi), Ψj(h) = diag(ψj(he), ψj(hi)), pe = (pee, pei)
T , pi = (pie, pii)

T

and I is the identity matrix, with

Sj(hj) =Smax
j (1 + rabsS

max
j exp[−gj(hj − θj)])

−1 (5)

ψj(hj′) = (heq
j − hj′)/|heq

j − hr
j′ | (6)

where j, j ′ = e, i. Table 2 defines all symbols used. Equation 1 corresponds to
an average neuron into which all the synaptic “currents” terminate. Equations
2 and 3 correspond to the activation of post-synaptic receptors by incoming
pre-synaptic activity. Equation 4 describes the propagation of neural activity
(in terms of action potential firings) by the cortico-cortical (long-range fibers).

3 Numerical Solutions

A one-dimensional von Neumann-Richtmyer finite difference solver [6] cou-
pled with a fourth-order Runge-Kutta method was used for the numerical
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e, i excitatory, inhibitory τj membrane time constant

hj mean soma membrane poten-
tial

ξ mean synaptic delay

γj transmitter rate constant v mean cortico-cortical conduc-
tion velocity

Γj post-synaptic potential ampli-
tude

hr
j resting cell membrane poten-

tial

Nα
ej total number of connections

that a cell of type j re-
ceives from excitatory cells via
cortico-cortical fibers

h
eq
j reversal potential associated

with synapses of type j

N
β
j′j total number of connections

that a cell of type j receives
from cells of type j′ via intra-
cortical fibers

Sj mean firing rate

Λej characteristic scale of cortico-
cortical fibers

solutions of equations (1)-(4). Figure 1 illustrates three oscillatory modes for
the mean soma membrane potential of excitatory cells in response to varia-
tions in the mean amplitude of an homogeneously applied spatio-temporally
band-limited white noise driving excitatory cells - (i) low amplitude oscilla-
tion at 13 − 20 Hz (mammalian beta), (ii) moderate amplitude oscillation at
8 − 13 Hz (mammalian alpha) and (iii) high amplitude oscillations (analo-
gous to epileptic spikes) associated with the regenerative spread of excitation
(figure not shown).

Figure 2 illustrates the temporal response of excitatory neurons at x = 0
for two excitatory impulses of differing durations. The form of the damped
oscillatory responses resembles the middle and late components found to exist
in a variety of cortical event-related potentials (ERP). Of particular note is
the notch on the first “wave” of excitation at about 25 ms. Such a notch is
found in average evoked potential recordings from pre-pyriform cortex when
the lateral olfactory bulb is stimulated. Freeman explained this as the result
of re-excitation of pyramidal cells by pyramidal cells [2]. This result is the first
unequivocal replication of this phenomenon, which demonstrates the mutually
excitatory connections that are crucial for learning [1].
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Fig. 1. Illustration of three oscillatory modes of the mean soma membrane potential
of excitatory cells at x = 0 in response to homogeneous driving of inhibitory and ex-
citatory cells with spatio-temporally band-limited (< 6.2 rad cm−1, < 620 rad s−1)
white noise. (i) 〈pee(x, t)〉 = 1.1 ms−1 (solid line) (ii) 〈pee(x, t)〉 = 1.4 ms−1 (dashed
line) (iii) 〈pee(x, t)〉 = 1.5 ms−1 (dotted line). Other parameters for the driving noise
were var[pee(x, t)] = 1.0 ms−2, var[pei(x, t)] = 1.6 ms−2 and 〈pei(x, t)〉 = 1.6 ms−1.
Boundary conditions were null flux, simulation time step was 0.1 ms, τe,i = 5 ms,
Γe = 0.18 mV , Γi = 0.37 mV , γe = 0.3 ms−1, γi = 0.065 ms−1, hr

e,i = −70 mV ,

heq
e = 45 mV , h

eq
i = −90 mV , N

β
ee,ei = 3034, N

β
ie,ii = 536, Nα

ee = 4000, Nα
ei = 2000,

Λee = 0.4 cm−1, Λei = 0.65 cm−1, v = 0.7 cmms−1, rabs = 1 ms, θe,i = −50 mV ,
ge = 0.28 mV −1 , gi = 0.14 mV −1, Emax, Imax = 1 ms−1 and ξ = 0 ms. Further
details about the parameter values used can be found in [4].

4 Conclusions

Inhomogeneities are easily added to the equations derived if gradient informa-
tion is ignored and areal variations occur at characteristic scales large com-
pared to numerical discretization. Further the issue of cortical lamination can
be most profitably addressed, within this theory, by considering more than two
local neuronal populations. Equations (1)-(4) allow the easy inclusion of any
number of spatial scales and neuronal sub-populations and may be especially

5



600 650 700 750 800
time (ms)

−80

−75

−70

−65
m

ea
n 

so
m

a 
m

em
br

an
e 

po
te

nt
ia

l (
m

V
)

Fig. 2. Temporal response of excitatory neurons at x = 0, to two different impulses
applied at x = 0 - (i) 2 ms−1 (height), 20 ms (width) (solid line), and (ii) 40 ms−1,
1 ms (dashed line). ge,i = 0.28 mV −1 otherwise all simulation parameters are the
same as Figure 1.

useful in the modeling of distributed cortical systems such as the olfactory
system (see for example [9]).
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